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Abstract

This paper is concerned with the use of the Timoshenko beam model for free vibration analysis of multi-walled carbon

nanotubes (CNTs). Unlike the Euler beam model, the Timoshenko beam model allows for the effects of transverse shear

deformation and rotary inertia. These effects become significant for CNTs with small length-to-diameter ratios that are

normally encountered in applications such as nanoprobes. By using the differential quadrature (DQ) method, the

governing Timoshenko equations are solved for CNTs of different length-to-diameter ratios and boundary conditions. By

comparing results based on the Timoshenko and the Euler beam theories, we show that the frequencies are significantly

overpredicted by the Euler beam theory when the length-to-diameter ratios are small and when considering high vibration

modes. For such situations, the Timoshenko beam model should be used for a better prediction of the frequencies.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, researchers have advanced the field of nanotechnology at a phenomenal pace. In particular,
the discovery of carbon nanotubes (CNTs) in 1991 [1] has speeded the development of nanotechnology
because these CNTs possess superior mechanical, electronic and chemical properties [2–5]. They are about ten
times stronger but six times lighter than steel [6]. They can conduct electricity as a semiconductor and transmit
heat extremely well. Undoubtedly, CNTs holds great potential in becoming the new nanomaterial of this early
part of the 21st century.

The mechanical behavior of CNTs has been explored through experiments, molecular dynamics (MD)
simulations, and elastic continuum mechanics. Presently there are some difficulties encountered in conducting
experiments on CNTs because of the nanometer dimensions. MD simulations are highly computationally time
consuming and have often been limited to coarse atomic systems. The search for more practical and cost
effective analysis methods is on. It is reported in the literature that continuum mechanics may serve as an
alternative method to study CNTs instead of MD and experiments by treating CNTs as continuum elastic
structures. By studying the buckling of single-walled nanotubes and comparing the results of atomic modeling
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.01.005

ing author. Tel.: +65 874 2157; fax: +65779 1635.

ess: cvewcm@nus.edu.sg (C.M. Wang).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS
C.M. Wang et al. / Journal of Sound and Vibration 294 (2006) 1060–1072 1061
with a continuum shell model, Yakobson et al. [7] found that the continuum shell model can be used to
estimate all the changes of buckling patterns satisfactorily. Their studies together with many others lead to the
conclusion that ‘‘The laws of continuum mechanics are amazingly robust and allow one to treat even
intrinsically discrete objects only a few atoms in diameter’’ [8]. In recent years, many elastic continuum models
were developed including beam models [9,10], cylindrical shell models [11–15] and space truss/frame models
[16,17] for studying the bending, buckling and vibration behaviors of CNTs.

Based on a literature search, it is observed that the Euler beam model is widely used in vibration and
buckling analyses [2,10,18,19] and in sound wave propagation problems [20,21]. The simplicity of the single
elastic beam model, which neglects the interaction between tubes and assumes that the nested tubes of multi-
walled carbon nanotubes (MWNTs) deform coaxially, has led to its numerous applications in static and
dynamic studies of MWNTs [2,18,23–25]. For instance, for the vibration of MWNTs embedded in an elastic
medium, a single elastic beam model has been shown to be adequate in predicting the frequency of double-
walled CNT of very large length-to-diameter ratios [10].

The single Euler beam (SEB) model is relatively simple and easy to apply. The governing equation of Euler
beams contains only one unknown variable (the deflection of the beam) because the effects of transverse shear
deformation and rotary inertia are ignored. However, these effects do have a substantial effect on the
vibration frequencies of CNTs when the tubes are stocky and when dealing with high modes of vibration.
Stocky beams are encountered when CNTs are applied as nanotweezers [26] and nanoprobes [27–29] since
they generally have small length-to-diameter ratios. When investigating the dynamics responses of nanotubes
in elastic medium using the modal expansion technique, one requires a large number of vibration modes
including the high modes for accurate responses. Furthermore, the study of high modes of vibration is
important in order to avoid the destructive effect of resonance occurring at high frequencies. Therefore, to
capture more accurately the mechanical behavior of CNTs, we propose that the Timoshenko beam model be
utilized rather than the Euler beam model. Yoon et al. [22] is probably one of the earliest researchers to use the
Timoshenko beam model for CNTs. They used the model to study the effects of shear deformation and rotary
inertia on wave propagation in CNTs.

In this paper, the free vibration behavior of MWNTs is investigated using the Timoshenko beam model.
The effects of shear deformation and rotary inertia on the vibration frequencies are examined for different
length-to-diameter ratios of CNTs under various end conditions. The differential quadrature (DQ) method is
applied to solve the coupled governing vibration equations of the MWNTs.

In the treatment of a MWNT using the Timoshenko beam model, we can either have a single-Timoshenko
beam (STB) to model the MWNT or a multi-Timoshenko beam model where each beam models one carbon
nanotube of the multi-walled CNTs. We begin this study with the STB model as it will elucidate the
Timoshenko beam equations and the DQ method for solution. These equations will later be augmented for the
multi-Timoshenko beam model and a double-walled CNT is solved so as to investigate the effects of transverse
shear deformation and rotary inertia on the frequencies.
2. STB model

2.1. Basic equations

The governing equations for a vibrating Timoshenko beam are given by Timoshenko [30]

rAo2w� KGA
dj
dx
�

d2w

dx2

� �
¼ 0, (1a)

EI
d2j
dx2
� KGA j�

dw

dx

� �
þ rIo2j ¼ 0, (1b)

where w is the transverse displacement, j the slope of the beam due to bending deformation alone, x the axial
coordinate, I the second moment of area of cross-section, A the cross-sectional area, r the mass density per
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unit volume, K the shear correction factor, E the Young’s modulus, G the shear modulus and o the circular
frequency of the beam.

2.2. DQ formulation

The analytical solutions for Eq. (1) for Timoshenko beams with various boundary conditions are available
in the literature (e.g. Ref. [31]). We shall use these analytical solutions to verify the results obtained by the DQ
method. For more information on the DQ method, readers may refer to Ref. [32]. The essence of DQ method
is that the partial derivative of a function with respect to a space variable at a grid point can be approximated
as the weighted linear sum of the function values at all grid points in the whole domain. The computational
domain of the beam is 0pxpL. We assume that the beam is divided into (M�1) intervals by M grid points
with the coordinates given as x1; x2; . . . ; xM . Here we adopt the well accepted mesh point distribution [32]

xi ¼
1

2
1� cos

i � 1

M � 1
p

� �� �
� L; i ¼ 1; 2; . . . ;M. (2)

By applying the DQ rule to Eqs. (1a) and (1b) in the beam domain 0pxpL, one obtains the following
discretized formulation of Eqs. (1a) and (1b):

KGA
XM
j¼1

bijwj þ rAo2wi � KGA
XM
j¼1

aijjj ¼ 0, (3a)

EI
XM
j¼1

bijjj � ðKGA� rIo2Þji þ KGA
XM
j¼1

aijwj ¼ 0, (3b)

where i ¼ 1; . . . ;M and aij, bij are the weighting coefficients for the grid point at xi of the first- and second-
order derivatives, respectively. The weighting coefficients can be calculated on the basis of Eq. (2). Their
explicit expressions are given in Appendix A.

2.3. Eigenvalue equation

In view of the boundary conditions, Eqs. (3a) and (3b) can be expressed in the following matrix form:

½S�fUg ¼ o2fUg, (4)

where fUgT ¼ fw2;w3; . . . ;wM�1; j2;j3; . . . ;jM�1g including the degrees of freedom on the interior points of
the domain and [S] is the stiffness matrix.

The natural vibration frequencies of the beam are furnished by the eigenvalues of the eigenvalue problem
defined by Eq. (4). The eigenvalues may be computed using any standard eigenvalue solver such as the QR
algorithm [33].

2.4. Example problems

Let us consider a double-walled CNT with an inner diameter 2R1 ¼ 0:7 nm and an outer diameter
d ¼ 2R2 ¼ 1:4 nm, where R1 is the radius of the inner tube centreline while R2 is the radius of the outer tube
centerline [10,28,29]. The CNT is either clamped at both ends (CC) as shown in Fig. 1 or clamped at one end
and free at the other end (CF). It is assumed that the inner and outer tubes have the same Young’s modulus
E ¼ 1TPa (with the effective thickness of single-walled CNTs t ¼ 0:35 nm), shear modulus G ¼ 0:4TPa,
Poisson’s ratio v ¼ 0:25 [10]. In accordance to the definition of the effective thickness and the Young’s
modulus mentioned above, a mass density r ¼ 2:3 g=cm3 is adopted [22]. The cross-sectional area A and
moment of inertia I are the total cross-sectional area and the total moment of inertia of double-walled CNT,
i.e. A ¼ A1 þ A2 and I ¼ I1 þ I2 where the subscripts 1, 2 are used to denote the quantities belonging to the
inner and outer tubes, respectively. Since the present double-walled CNT is treated as a single beam with
hollow annular cross section, the dependence of the shear correction factor K on its cross-sectional shape is
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Fig. 1. Geometry of double-walled CNT.

Table 1

Frequency parameter O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAo2

nL4=ðEIÞ
4
q

of CC double-walled CNT modeled by STB and SEB models

Mode number n STB SEB

L=d ¼ 10 L=d ¼ 30 L=d ¼ 50 L=d ¼ 100

1 4.5533 4.7085 4.7222 4.7280 4.7300

2 7.2493 7.7718 7.8234 7.8457 7.8540

3 9.6978 10.799 10.922 10.977 10.995

4 11.900 13.755 13.992 14.100 14.137

5 13.898 16.630 17.028 17.214 17.279

6 15.7270 19.420 20.025 20.317 20.420

7 17.4153 22.119 22.978 23.408 23.561

8 18.985 24.726 25.884 26.484 26.703

9 20.454 27.244 28.740 29.544 29.845

10 21.833 29.674 31.544 32.588 32.987
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considered, and K is determined by the following formula [34]:

K ¼
6ð1þ nÞð1þ aÞ2

ð7þ 6nÞð1þ aÞ2 þ ð20þ 12nÞa2
, (5)

where a ¼ ð2R1 � tÞ=ð2R2 þ tÞ is the ratio of the innermost and the outermost diameters of the tube. By
substituting the adopted values of R1, R2 and v into Eq. (5), we obtain K ¼ 0:82.

Using the DQ method, we compute the first ten natural frequency parameters O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAo2

nL4=ðEIÞ
4
q

where n

is the mode number for both sets of boundary conditions. The results for CC beams and CF beams are
tabulated in Tables 1 and 2, respectively, for various length-to-diameter ratios. These results are compared
with the corresponding results based on a SEB model [30]. The latter results are computed from these
characteristic equations:

coshðOÞcosðOÞ ¼ 1 for CC beam; (6)

coshðOÞcosðOÞ ¼ �1 for CF beam: (7)

From the results shown in Tables 1 and 2, it can be observed that for stocky CNTs, i.e. relatively small
length-to-diameter ratios (L=dp30), the vibration results of the Timoshenko beam model are significantly
lower than the Euler beam model results due to the effects of shear deformation and rotary inertia. For
example, the Euler beam model overpredicts the frequencies of CC double-walled CNT with L=d ¼ 10 by
3.735%, 19.56% and 33.81% for the 1st, 5th and 10th mode, respectively. The relative percentage difference in
the results from the two beam models increases with respect to increasing mode numbers.
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Table 2

Frequency parameter O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAo2

nL4=ðEIÞ
4
q

of CF double-walled CNT modeled by STB and SEB models

Mode number n STB SEB

L=d ¼ 10 L=d ¼ 30 L=d ¼ 50 L=d ¼ 100

1 1.8663 1.8741 1.8747 1.8750 1.8750

2 4.5503 4.6769 4.6878 4.6925 4.6940

3 7.3437 7.7872 7.8300 7.8485 7.8539

4 9.8415 10.824 10.932 10.979 10.995

5 12.090 13.795 14.008 14.104 14.137

6 14.122 16.688 17.051 17.220 17.279

7 15.973 19.496 20.057 20.326 20.420

8 17.671 22.214 23.019 23.419 23.562

9 19.238 24.841 25.936 26.498 26.703

10 20.690 27.377 28.802 29.562 29.845
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Fig. 2. Comparison of results between SEB and STB models for CC double-walled CNT.
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For long and slender CNTs (i.e. L=d450), the effects of shear deformation and rotary inertia on the
vibration frequencies are negligible as can be observed from the Timoshenko and Euler beam results in Tables
1 and 2. This can also be observed from the frequency values with respect to the mode number in Figs. 2 and 3.
Note that the close agreement of frequencies obtained by the DQ method and by Eqs. (6) and (7) for
L=d ¼ 100 verifies the correctness of the DQ formulation.

However, it should be pointed out that the single beam model fails to represent the behavior of individual
tubes and the relative deformation between adjacent tubes. For example, the single beam model provides only
one set of n-order frequencies for double-walled CNTs when there should be two sets due to non-coaxial
vibration. Another obvious drawback of the model is that it is only applicable when both nested tubes have
the same end conditions. It is possible for the nanotubes in a double-walled CNT to have different boundary
conditions. In this case, the single beam model cannot model such boundary conditions and a more refined
double-beam model is needed. It is clear that for MWNTs, we need a multi-beam model.

3. Multi-walled Timoshenko beam model

A multi-beam model has been developed and applied for the analysis of buckling [35] and free vibration of
MWNTs [10]. In the aforementioned papers, the multi-beam model is based on the Euler beam theory and
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Fig. 3. Comparison of results between SEB and STB models for CF double-walled CNT.
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assumes that all the nested, concentric single-walled CNT are described by an elastic beam individually. In the
multi-beam model, the deflections of the adjacent tubes are coupled due to the presence of the so-called van
der Waals forces. The forces are modeled by a Winkler-type model involving the relative interlayer radial
displacements. Since the nanotubes are treated individually in the multi-beam model, the end conditions can
therefore be described individually. Thus, the improved model can be adopted to simulate MWNTs with tubes
having different end conditions. In contrast to the single beam model, the multi-beam model is a better one
since it can take into consideration (a) van der Waals forces, (b) different boundary conditions for each
nanotube of the MWNT and (c) provides N sets of frequencies, where N is the number of the nanotubes in a
MWNT.

As an improvement of the multi-Euler beam model, the multi-Timoshenko beam model is proposed. In this
model, each nanotube of aMWNT is simulated by a Timoshenko beam that allows for the effects of transverse
shear deformation and rotary inertia. The deflections of the adjacent tubes are coupled through the van der
Waals force which is determined by the interlayer spacing. By augmenting Eq. (1) for a MWNT with N tubes,
the 2�N coupled governing equations are:

rA1o2w1 � K1GA1
dj1

dx
�

d2w1

dx2

� �
¼ �c1ðw2 � w1Þ,

EI1
d2j1

dx2
� K1GA1 j1 �

dw1

dx

� �
þ rI1o2j1 ¼ 0, ð8aÞ

rA2o2w2 � K2GA2
dj2

dx
�

d2w2

dx2

� �
¼ �c2ðw3 � w2Þ þ c1ðw2 � w1Þ,

EI2
d2j2

dx2
� K2GA2 j2 �

dw2

dx

� �
þ rI2o2j2 ¼ 0,

..

.
ð8bÞ

rANo2wN � KNGAN

djN

dx
�

d2wN

dx2

� �
¼ cN�1ðwN � wN�1Þ,

EIN

d2jN

dx2
� KNGAN jN �

dwN

dx

� �
þ rINo2jN ¼ 0, ð8nÞ
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where Ij is the second moment of area of the jth tube, Aj the cross-sectional area of jth tube, and Kj the shear
correction factor of the jth tube. Since each of the tube of the MWNT is modeled by an individual
Timoshenko beam. The shear correction factors Kj of these beams/tubes are different from each other
according to Eq. (5) due to their different cross-sectional dimensions. In addition, it is assumed that all tubes
share the same Young’s modulus, shear modulus and mass density. The van der Waals interaction coefficients
cjðj ¼ 1; 2; . . . ;N � 1Þ can be estimated as [6]

cj ¼
320� ð2RjÞerg=cm2

0:16D2
; D ¼ 0:142 nm; j ¼ 1; 2; . . . ;N � 1, (9)

where Rj is the center line radius of the jth tube and D the length of carbon–carbon (C–C) bond. For the
present double-walled CNT with R1 ¼ 0:35 nm, Eq. (9) gives c1 ¼ 6:943� 1011 erg=cm3 ¼ 0:06943TPa.

In this study, the MWNTs modeled according to the Timoshenko beam theory are free of the surrounding
elastic medium, i.e. free of external lateral pressure. However, this lateral pressure effect can be easily
accommodated by adding the term kwN in the right-hand side of the first equation in Eq. (8n), where k is the
spring constant determined by the material constants of the elastic medium, the outermost diameter of the
embedded MWNT, and the wave-length of vibrational modes [10].

3.1. Double-Timoshenko beam (DTB) model for double-walled CNT

Using Eq. (7) with N ¼ 2 and the DQ rule, the discretized governing equations for double-walled CNT are:

K1GA1

XM
j¼1

bijw1j � c1w2i þ ðc1 � rA1o2Þw1i � K1GA1

XM
j¼1

aijj1j ¼ 0,

EI1
XM
j¼1

bijj1j þ ðrI1o2 � K1GA1Þj1i þ K1GA1

XM
j¼1

aijw1j ¼ 0, ð10aÞ

K2GA2

XM
j¼1

bijw2j � c1w1i þ ðc1 � rA2o2Þw2i � K2GA2

XM
j¼1

aijj2j ¼ 0,

EI2
XM
j¼1

bijj2j þ ðrI2o2 � K2GA2Þj2i þ K2GA2

XM
j¼1

aijw2j ¼ 0 ð10bÞ

for i ¼ 1; 2; . . . ;M. The subscripts 1 and 2 denote the quantities of the inner and outer tubes, respectively.
Based on Eq. (5) and the adopted values of R1, R2 and v, we obtain K1 ¼ 0:75 and K2 ¼ 0:64 for the inner tube
and the outer tube, respectively.

For our calculations, the double-walled CNT is assumed to have the same geometrical and material
parameters that are given in Section 2. The influences of transverse shear deformation and rotary inertia on
the vibration frequencies are investigated by comparing the double-Timoshenko beam (DTB) results to those
based on the Euler beam model. The analytical results based on the double-Euler beam (DEB) model for the
free vibration of double-walled CNT are reported in the paper by Yoon et al. [10]. In their paper [10], the two
sets of n-order resonant frequencies are given by

o2
n1 ¼

1
2

an �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n � 4bn

q� �
, (11a)

o2
n2 ¼

1
2 an þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n � 4bn

q� �
, (11b)

where

an ¼ O4
n

EI1

rA1L
4
þ

EI2

rA2L
4

� �
þ c1

A

rA1A2
, (12a)
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bn ¼ O8
n

EI1

rA1L4

EI2

rA2L4

� �
þ c1O4

n

EI1

rA1L4
þ

EI2

rA2L
4

� �
, (12b)

where A ¼ A1 þ A2.
Figs. 4 and 5 compare the frequencies obtained by DTB and DEB models for various length-to-diameter

ratios and for CC and CF end conditions. In the figures, the lower frequency parameter set is defined as

On1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

n1rAL4=ðEIÞ
4
q

while the higher set by On2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

n2rAL4=ðEIÞ
4
q

where I ¼ I1 þ I2.

From Fig. 4, we observe that for small length-to-diameter ratios, for instance L=d ¼ 10, the effects of shear
deformation and rotary inertia on the frequency values cannot be ignored, especially for higher modes. It is
clearly seen from Fig. 4a that shear deformation and rotary inertia lead to a significant reduction in the
frequencies. With increasing length-to-diameter ratios, say L=d ¼ 30 and beyond, the effects of shear
deformation and rotary inertia on the frequencies diminish at lower modes but are still somewhat significant at
higher modes. As shown in Fig. 4b, the Euler and the Timoshenko results for the lower set of n-order resonant
frequencies are in good agreement when np5 and for the higher set of frequencies when np9. Beyond these n

values, the Timoshenko results are lower than their Euler counterparts and their differences increase with
increasing n values. It is clear that shear deformation and rotary inertia have more influence on the lower set of
n-order resonant frequencies On1.
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Fig. 4. Frequencies of CC double-walled CNT against mode number n based on DTB and DEB models (a) L=d ¼ 10; (b) L=d ¼ 30;

(c) L=d ¼ 50; (d) L=d ¼ 100.
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Fig. 5. Frequencies of CF double-walled CNT against mode number n based on DTB and DEB models (a) L=d ¼ 10; (b) L=d ¼ 30;

(c) L=d ¼ 50.
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For the higher set of frequencies, the frequency values do not vary much with respect to the mode number as
well as L/d when this ratio is greater than 30. This constancy of frequency set can be obtained from Eqs. (11b),
(12a) and (12b). For large values of L/d and small n values, we can argue that L4=I1bO4

n and L4=I2bO4
n, and

therefore Eqs. (12a) and (12b) become

an !
c1

rA1
þ

c1

rA2
¼ c1

A

rA1A2
and bn ! 0. (13a,b)

In view of Eqs. (13a) and (13b), Eq. (11b) reduces to

ðon2Þ
2
! an ¼ c1

A

rA1A2
or On2!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

A2L4

A1A2EI

4

s
. (14)

It can be seen that on2 is constant for given values of c1, r, A1 and A2. Under the aforementioned conditions,
this second set of frequencies is independent of the large magnitudes of length L, mode number n and the end
conditions. The frequency value is only dependent on the van der Waals force coefficients c1 and the diameters
of the tubes. To verify the above observation, the results based on Eq. (14) are compared to those based on
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Eq. (11b) for large L/d and small n values. It is found that they are in excellent agreement. However, the
allowance for shear deformation and rotary inertia lowers the second set of frequency values when the mode
number is large.

If L/d increases to 50 (i.e. the beam becomes longer and more slender), the influence of the shear
deformation and rotary inertia on the higher n-order resonant frequencies On2 can be neglected (Fig. 4c).
It is also observed from Fig. 4c that On2 is insensitive to the mode number. As for the lower frequency set On1,
the results obtained by the Timoshenko beam model agree well with those obtained by the Euler beam model
for the first few modes, say np10. However, as n becomes larger, the frequencies separate with the
Timoshenko beam model furnishing lower results than those of the Euler beam due to shear deformation and
rotary inertia.

To obtain a better insight into the effects, the relative percentage difference C ¼ jOT � OE=OEj � 100% of
the two resonant frequencies are plotted in Fig. 6, where OT and OE represent the frequencies of DTB and
DEB models, respectively. The percentage difference of On2, denoted by solid line is very small with only a
maximum value of 1.35% at n ¼ 15. In contrast, the percentage difference is very large for On1 since On1 is
sensitive to mode number, length-to-diameter ratio and end conditions. The percentage difference is
proportional to the mode number. This implies that the shear deformation and rotary inertia have greater
influence on the lower set of frequencies On1 than the higher set of On2.

When L=d4100, the results shown in Fig. 4d reveal that DTB and DEB results are almost equivalent. So
for long and slender CNTs, shear deformation and rotary inertia have negligible effect on the vibration
frequencies.

As can be seen in Table 3, the first several frequencies On1 (np7) of DTB and DEB model for double-walled
CNT with CC end conditions are close to those given by SEB model, especially when L/d is 50 and beyond.
The first several On1 for CNT with large L/d can therefore be estimated by the SEB model instead of DTB or
DEB with good accuracy.

Similar observations are made for double-walled CNTs with other boundary conditions, such as simply
supported (SS) and clamped-simply supported (CS) ends. Sample vibration results are presented in
Tables 4 and 5 for these boundary conditions. It can be observed from Tables 4 and 5 as well as from
Figs. 4 and 5 that the higher set of frequencies On2 for the above four different end conditions are close to
each other, i.e. approximately 63.5 for L=d ¼ 50. In conclusion, the higher set of frequencies On2 is insensi-
tive to end conditions, mode number and length. On the other hand, the lower set of frequencies On1

is sensitive to the aforementioned factors. It is also shown that the transverse shear deformation and
rotary inertia have greater influence on On1 than On2. Furthermore, these effects are proportional to the
mode number.
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Fig. 6. Percentage difference between frequencies of DEB and DTB models (L=d ¼ 50).
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Table 3

Comparison of lower frequency parameters between DTB, DEB and SEB models with CC end conditions

n L=d ¼ 30 On1 L=d ¼ 50 On1 L=d ¼ 100 On1 SEB

DTB DEB DTB DEB DTB DEB

1 4.7112 4.7123 4.7224 4.7300 4.7328 4.7300 4.7300

2 7.7189 7.8533 7.8119 7.8539 7.8208 7.8539 7.8540

3 10.663 10.992 10.868 10.995 11.020 10.995 10.995

4 13.597 14.124 13.922 14.135 14.137 14.137 14.137

5 16.369 17.244 16.932 17.274 17.125 17.278 17.279

6 18.988 20.338 19.850 20.410 20.292 20.420 20.420

7 21.519 23.391 22.727 23.541 23.430 23.561 23.562

8 23.968 26.373 25.552 26.664 26.423 26.701 26.703

9 26.258 29.247 28.298 29.775 29.467 29.841 29.845

10 28.444 31.962 30.976 32.870 32.496 32.980 32.987

Table 4

Frequency parameters of double-walled CNT modeled by DTB and DEB models with SS end condition

n L=d ¼ 10 L=d ¼ 50

On1 On2 On1 On2

DTB DEB DTB DEB DTB DEB DTB DEB

1 3.0662 3.1410 12.700 12.720 3.1438 3.1416 63.485 63.560

2 6.0378 6.2650 12.714 12.843 5.8453 6.2832 63.490 63.561

3 8.5758 9.2756 12.805 13.381 9.3509 9.4245 63.502 63.565

4 10.850 11.880 13.846 14.832 12.536 12.565 63.517 63.576

5 13.115 13.946 15.016 17.383 15.726 15.705 63.522 63.601

6 14.5924 15.941 17.532 20.458 18.020 18.843 63.541 63.645

7 16.0989 18.071 18.893 23.696 21.095 21.976 63.555 63.72

8 16.470 20.319 20.195 26.993 25.101 25.103 63.578 63.829

9 18.039 22.645 21.192 30.316 28.055 28.221 63.687 63.991

10 19.512 25.020 22.064 33.653 30.913 31.325 63.855 64.217

Table 5

Frequency parameters of double-walled CNT modeled by DTB and DEB models with CS end condition

n L=d ¼ 10 L=d ¼ 50

On1 On2 On1 On2

DTB DEB DTB DEB DTB DEB DTB DEB

1 3.8598 3.9253 11.788 12.732 3.9156 3.9270 62.596 63.560

2 6.7185 7.0355 12.705 12.923 7.0505 7.0685 63.485 63.561

3 9.2148 9.9811 12.803 13.636 10.179 10.210 63.491 63.567

4 11.344 12.432 13.396 15.384 13.227 13.350 63.501 63.581

5 13.078 14.436 14.858 18.125 16.309 16.490 63.515 63.609

6 14.013 16.460 16.890 21.259 19.318 19.626 63.526 63.660

7 15.337 18.623 18.410 24.516 22.218 22.759 63.542 63.741

8 16.233 20.894 19.856 27.822 25.123 25.884 63.555 63.864

9 17.601 23.235 21.236 31.149 27.923 28.999 63.578 64.041

10 18.935 25.619 21.596 34.489 30.673 32.098 63.813 64.285
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4. Conclusions

Single and multi-walled Timoshenko beam models are developed for the free vibration of CNTs with
various end conditions. The models allow for the effects of transverse shear deformation and rotary inertia.
For a STB model, it is found that the aforementioned effects lead to a decrease in frequencies when compared
to those obtained by the Euler beam model. This phenomenon is amplified at higher mode numbers and for
small length-to-diameter ratios. With increasing length-to-diameter ratios, the effects of shear deformation
and rotary inertia on the frequencies diminish and the results given by the Timoshenko beam model are
equivalent to those of the Euler beam model. The STB model, similar to its Euler counterpart, treats the
MWNTs as a single beam. The frequencies for CNTs with large L/d can be estimated by the single beam
model with reasonably good accuracy. However, it fails to capture the intertube relative vibration of MWNTs
and hence the model is not good for predicting frequencies of CNTs with small L/d and higher order
frequencies. Furthermore, it only provides one set of frequencies when there should be N sets of frequencies
equal to the N walls in a MWNT.

For a double-walled CNT modeled by a DTB model, there are two sets of n-order resonant frequencies due
to non-coaxial vibration. The allowance for shear deformation and rotary inertia in the Timoshenko beam has
a greater effect on the lower set of n-order resonant frequency than the higher set. The phenomenon is clearly
seen when the mode numbers are large.

This study focuses on the free vibration of CNTs. Research is underway to extend the present multi-
Timoshenko beam model for the buckling and post-buckling problems of CNTs.

Appendix A. DQ weighting coefficients

Given the coordinates of M grid points as calculated from Eq. (2), the weighting coefficients aij and bij of the
first- and second-order derivatives with respect to x, respectively, are given by Timoshenko [30]

aij ¼
1

ðxj � xiÞ

YM
k¼1

kai;j

xj � xk

xj � xi

; i; j ¼ 1; 2; . . . ;M; iaj, (A.1)

aii ¼ �
XM
j¼1
jai

aij ; i ¼ 1; 2; . . . ;M, (A.2)

bij ¼ 2 aijaii �
aij

xj � xi

� �
; i; j ¼ 1; 2; . . . ;M ; iaj, (A.3)

bii ¼ �
XM
j¼1
jai

bij ; i ¼ 1; 2; . . . ;M. (A.4)
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